Ternary analogues of Lie and Malcev algebras

نویسندگان

  • Murray R. Bremner
  • Luiz A. Peresi
چکیده

We consider two analogues of associativity for ternary algebras: total and partial associativity. Using the corresponding ternary associators, we define ternary analogues of alternative and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc − acb − bac + bca + cab − cba (the ternary analogue of the Lie bracket) defines a structure of an anticommutative ternary algebra. We determine the polynomial identities of degree 7 satisfied by this operation in totally and partially associative, alternative, and assosymmetric ternary algebras. These identities define varieties of ternary algebras which can be regarded as ternary analogues of Lie and Malcev algebras. Our methods involve computational linear algebra based on the representation theory of the symmetric group. © 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

20 08 Lie Algebras with S 3 or S 4 - Action , and Generalized

Lie algebras endowed with an action by automorphisms of any of the symmetric groups S3 or S4 are considered, and their decomposition into a direct sum of irreducible modules for the given action is studied. In case of S3-symmetry, the Lie algebras are coordinatized by some nonassociative systems, which are termed generalized Malcev algebras, as they extend the classical Malcev algebras. These s...

متن کامل

Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras

Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...

متن کامل

On Derivation Algebras of Malcev Algebras and Lie Triple Systems

W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...

متن کامل

Universal enveloping algebras of the four-dimensional Malcev algebra

We determine structure constants for the universal nonassociative enveloping algebra U(M) of the four-dimensional non-Lie Malcev algebra M by constructing a representation of U(M) by differential operators on the polynomial algebra P (M). These structure constants involve Stirling numbers of the second kind. This work is based on the recent theorem of Pérez-Izquierdo and Shestakov which general...

متن کامل

The Simple Non-lie Malcev Algebra as a Lie-yamaguti Algebra

The simple 7-dimensional Malcev algebra M is isomorphic to the irreducible sl(2,C)-module V (6) with binary product [x, y] = α(x ∧ y) defined by the sl(2,C)-module morphism α : Λ2V (6)→ V (6). Combining this with the ternary product (x, y, z) = β(x∧y) ·z defined by the sl(2,C)-module morphism β : Λ2V (6)→ V (2) ≈ sl(2,C) gives M the structure of a generalized Lie triple system, or Lie-Yamaguti ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006