Ternary analogues of Lie and Malcev algebras
نویسندگان
چکیده
We consider two analogues of associativity for ternary algebras: total and partial associativity. Using the corresponding ternary associators, we define ternary analogues of alternative and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc − acb − bac + bca + cab − cba (the ternary analogue of the Lie bracket) defines a structure of an anticommutative ternary algebra. We determine the polynomial identities of degree 7 satisfied by this operation in totally and partially associative, alternative, and assosymmetric ternary algebras. These identities define varieties of ternary algebras which can be regarded as ternary analogues of Lie and Malcev algebras. Our methods involve computational linear algebra based on the representation theory of the symmetric group. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
20 08 Lie Algebras with S 3 or S 4 - Action , and Generalized
Lie algebras endowed with an action by automorphisms of any of the symmetric groups S3 or S4 are considered, and their decomposition into a direct sum of irreducible modules for the given action is studied. In case of S3-symmetry, the Lie algebras are coordinatized by some nonassociative systems, which are termed generalized Malcev algebras, as they extend the classical Malcev algebras. These s...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملOn Derivation Algebras of Malcev Algebras and Lie Triple Systems
W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...
متن کاملUniversal enveloping algebras of the four-dimensional Malcev algebra
We determine structure constants for the universal nonassociative enveloping algebra U(M) of the four-dimensional non-Lie Malcev algebra M by constructing a representation of U(M) by differential operators on the polynomial algebra P (M). These structure constants involve Stirling numbers of the second kind. This work is based on the recent theorem of Pérez-Izquierdo and Shestakov which general...
متن کاملThe Simple Non-lie Malcev Algebra as a Lie-yamaguti Algebra
The simple 7-dimensional Malcev algebra M is isomorphic to the irreducible sl(2,C)-module V (6) with binary product [x, y] = α(x ∧ y) defined by the sl(2,C)-module morphism α : Λ2V (6)→ V (6). Combining this with the ternary product (x, y, z) = β(x∧y) ·z defined by the sl(2,C)-module morphism β : Λ2V (6)→ V (2) ≈ sl(2,C) gives M the structure of a generalized Lie triple system, or Lie-Yamaguti ...
متن کامل